Engineering Properties of Controlled Low-Strength Materials Containing Bottom Ash of Municipal Solid Waste Incinerator and Water Filter Silt

Author:

Kuo Wen-Ten,Gao Zhen-Chang

Abstract

The bottom ash of a municipal solid waste incinerator (MSWI) and water filter silt (WFS) were applied to a controlled low-strength material (CLSM) in the present study. The CLSM of the control group was composed of cement, water, and fine aggregates. WFS was first used as a fill material to replace 10% of the volume of natural fine aggregates in the CLSM. MSWI bottom ash was used to replace 0%, 25%, 50%, 75%, and 100% of the volume of the remaining natural fine aggregates with a water-cement ratio of 1.6. The engineering properties of freshness, hardening, and durability were examined. The results revealed that the slump flows of all of the mixture proportions ranged between 50 and 70 cm. The tube flow ranged between 20 and 30 cm, conforming to ASTM D6103 and construction regulations regarding CLSMs stipulated by the Water Resources Agency of the Ministry of Economic Affairs in Taiwan. Increases in the replacement amount of MSWI bottom ash prolonged the time required to achieve a resistance to penetration of 2.74 MPa. The diameter of the drop test ball was less than 7.6 cm, indicating that the mixture proportions had sufficient bearing capacity for successive construction. At an age of 28 d, the compressive strength did not exceed the 8.4 MPa prescribed in ASTM D4832. The ultrasonic pulse velocity and water absorption exhibited identical growth tendencies. In summary, using MSWI bottom ash to create CLSMs is feasible on the condition that the appropriate amount of WFS should be added.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3