A High-Frequency and Real-Time Ground Remote Sensing System for Obtaining Water Quality Based on a Micro Hyper-Spectrometer

Author:

Li Yunfei1ORCID,Fu Yanhu1,Lang Ziyue2,Cai Fuhong1

Affiliation:

1. School of Biomedical Engineering, Hainan University, Sanya 572000, China

2. School of Food Science and Engineering, Hainan University, Haikou 570228, China

Abstract

The safeguarding of scarce water resources is critically dependent on continuous water quality monitoring. Traditional methods like satellite imagery and automated underwater observation have limitations in cost-efficiency and frequency. Addressing these challenges, a ground-based remote sensing system for the high-frequency, real-time monitoring of water parameters has been developed. This system is encased in a durable stainless-steel shell, suited for outdoor environments, and features a compact hyperspectral instrument with a 4 nm spectral resolution covering a 350–950 nm wavelength range. In addition, it also integrates solar power, Wi-Fi, and microcomputers, enabling the autonomous long-term monitoring of water quality. Positioned on a rotating platform near the shore, this setup allows the spectrometer to quickly capture the reflective spectrum of water within 3 s. To assess its effectiveness, an empirical method correlated the reflective spectrum with the actual chlorophyll a(Chla) concentration. Machine learning algorithms were also used to analyze the spectrum’s relationship with key water quality indicators like total phosphorus (TP), total nitrogen (TN), and chemical oxygen demand (COD). Results indicate that the band ratio algorithm accurately determines Chla concentration (R-squared = 0.95; RMSD = 0.06 mg/L). For TP, TN, and COD, support vector machine (SVM) and linear models were highly effective, yielding R-squared values of 0.93, 0.92, and 0.88, respectively. This innovative hyperspectral water quality monitoring system is both practical and reliable, offering a new solution for effective water quality assessment.

Funder

Hainan Province Key Area R&D Program

Publisher

MDPI AG

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3