The Impact of Inter-Basin Water Transfer Schemes on Hydropower Generation in the Upper Reaches of the Yangtze River during Extreme Drought Years

Author:

Wen Fan1,Yang Mingxiang12,Guan Wenhai3,Cao Jixue3,Zou Yibo3,Liu Xuan14,Wang Hejia1,Dong Ningpeng1256ORCID

Affiliation:

1. State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, China Institute of Water Resources and Hydropower Research, Beijing 100038, China

2. Cooperative Innovation Center for Water Safety & Hydro Science, Hohai University, Nanjing 210000, China

3. China Three Gorges Corporation, Yichang 443000, China

4. College of Civil Engineering, Tianjin University, Tianjin 300354, China

5. State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University, Nanjing 210098, China

6. Key Laboratory of Flood and Drought Hazard Control, Ministry of Water Resources, Nanjing 210029, China

Abstract

The Yangtze River Basin experiences frequent extreme heatwaves and prolonged droughts, resulting in a tight supply demand balance of electricity and negatively impacting socioeconomic production. Meanwhile, ongoing inter-basin water diversion projects are planned that will divert approximately 25.263 billion cubic meters of water from the Yangtze River Basin annually, which may further affect the power supply in the region. In this study, the CLHMS-LSTM model, a land-surface hydrological model coupled with a long short-term memory (LSTM)-based reservoir operation simulation model, is used to investigate the impact of water diversions on the power generation of the Yangtze River mainstream reservoirs under extreme drought conditions. Two different water diversion schemes are adopted in this study, namely the minimum water deficit scheme (Scheme 1) and minimum construction cost scheme (Scheme 2). The results show that the land surface–hydrological model was able to well characterize the hydrological characteristics of the Yangtze River mainstem, with a daily scale determination coefficient greater than 0.85. The LSTM reservoir operation simulation model was able to simulate the reservoir releases well, with the determination coefficient greater than 0.93. The operation of the water diversion projects will result in a reduction in the power generation of the Yangtze River mainstem by 14.97 billion kilowatt-hours. As compared to the minimum construction cost scheme (Scheme 2), the minimum water deficit scheme (Scheme 1) reduces the loss of power generation by 1.38 billion kilowatt-hours. The research results provide new ideas for the decision-making process for the inter-basin water diversion project and the formulation of water diversion plans, which has implications for ensuring the security of the power supply in the water diversion area.

Funder

China Three Gorges Corporation

Kunming Engineering Corporation Limited

Open Research Fund of the Key Laboratory of Flood and Drought Hazard Control of the Ministry of Water Resources

Belt and Road Special Foundation of the State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering

Key Research and Development Programme of Yunnan

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3