Effect of Alternating Well Water with Treated Wastewater Irrigation on Soil and Koroneiki Olive Trees

Author:

Fdil Jouhayna12,Zhou Xiaoliang1,Ahmali Abdelaali2,El Alaoui El Fels Abdelhafid3ORCID,Mandi Laila23ORCID,Ouazzani Naaila23ORCID

Affiliation:

1. College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500, China

2. Laboratory of Water, Biodiversity and Climate Change, Faculty of Sciences Semlalia, Cadi Ayyad University, Marrakech P.O. Box 2390, Morocco

3. National Center for Studies and Research on Water and Energy, Cadi Ayyad University, Marrakech P.O. Box 511, Morocco

Abstract

The use of treated wastewater (TWW) in irrigation has a positive impact by bringing fertilizers and organics. However, increases in the soil’s sodium adsorption ratio (SAR) creates a barrier to long-term TWW irrigation. Alternating well water with wastewater irrigation is one practical solution that could be used to address the problem. This work aims to study the effect of alternating two years of well water with two years of treated wastewater irrigation on the soil characteristics of a Koroneiki olive tree mesocosm. Urban and agri-food wastewater treated using various technologies, such as lagooning, activated sludge, multi-soil-layering, and constructed wetlands, were used for irrigation. The results showed that an increase in salinity (SAR and ESP) in soil and olive tree leaves are the main negative effects of continuous irrigation with TWW on soil and tree performance. Several chemical and biochemical parameters, such as SAR and Na+ concentration, demonstrated that alternating well water with treated wastewater irrigation can reverse these negative effects. This recovery effect occurs in a relatively short period of time, implying that such a management practice is viable. However, long-term well water application reduces soil fertility due to the leaching of organics and exchangeable ions.

Funder

National Key R&D Program of China

National Natural Science Foundation of China

Sichuan Science and Technology Program

Horizon 2020 research and innovation program

ERA-Net Co-fund FOSC

Joint Programming Initiative on Agriculture, Food Security and Climate change

RA-Net Co-fund LEAP-Agri

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3