Grid Load Reduction through Optimized PV Power Utilization in Intermittent Grids Using a Low-Cost Hardware Platform

Author:

Nasir MashoodORCID,Khan Hassan AbbasORCID,Khan Irfan,Hassan Naveed ulORCID,Zaffar Nauman Ahmad,Mehmood Aneeq,Sauter Thilo,Muyeen S. M.ORCID

Abstract

Renewable energy incorporation in many countries takes different forms. In many developed countries, grid-tied solar photovoltaic (PV) installations are widely coupled with lucrative Feed-in-Tariffs (FiT). However, conventional grid-tied solutions are not readily viable in many developing countries mainly due to intermittent grids with load shedding and, in some cases, lack of net-metering or FiT. Load shedding refers to an intentional electrical power shutdown by the utility company where electricity delivery is stopped for non-overlapping periods of time over different parts of the distribution region. This results in a non-continuous availability of the utility grid for many consumers over the course of a day. In this work, the key challenges in the integration of solar energy explicitly in residential power back-up units are reviewed and system hardware level requirements to allow optimized solar PV utilization in such intermittent grid environments are analyzed. Further, based upon the low-cost sensing and real-time monitoring scheme, an online optimization framework enabling efficient solar incorporation in existing systems to achieve minimum grid dependence in intermittent grid environments is also provided. This work is particularly targeted for over 1.5 billion residents of semi-electrified regions in South Asia and Africa with the weak and intermittent grid.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference58 articles.

1. Electricity Information 2015,2015

2. Solar PV-Based Scalable DC Microgrid for Rural Electrification in Developing Regions

3. Dual–loop Control Strategy applied to PV/battery based Islanded DC microgrids for Swarm Electrification of Developing Regionshttps://www.forskningsdatabasen.dk/en/catalog/2439528045

4. A Decentralized Control Architecture Applied to DC Nanogrid Clusters for Rural Electrification in Developing Regions

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3