Power Generation from a Hybrid Generator (TENG-EMG) Run by a Thermomagnetic Engine Harnessing Low Temperature Waste Heat

Author:

Zeeshan ,Ahmed Rahate,Chun WongeeORCID,Oh Seung Jin,Kim Yeongmin

Abstract

This work explored the scavenging of low temperature waste heat and conversion of it into electrical energy through the operation of a gadolinium (Gd) based thermomagnetic engine. Gd is one of the unique materials whose magnetic property changes from ferromagnetic to paramagnetic depending on the temperature (“the Curie temperature”), which is around 20 °C. In the present work, two different types of generators were designed and applied to the rotating shaft of a Gd-based thermomagnetic engine developed for low temperature differential (LTD) applications. Of these, one is the so-called triboelectric nanogenerator (TENG), and the other is the electromagnetic generator (EMG). These have been designed to produce electricity from the rotating shaft of the thermomagnetic engine, exploiting both the electromagnetic and triboelectric effects. When operated at a rotational speed of 251 rpm with a temperature difference of 45 °C between the hot and cold water jets, the hybrid (TENG-EMG) generator produced a combined pulsating DC open circuit voltage of 5 V and a short circuit current of 0.7 mA. The hybrid generator effectively produced a maximum output power of 0.75 mW at a loading resistance of 10 kΩ.

Funder

National Research Foundation of Korea

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference21 articles.

1. A review of solar-powered Stirling engines and low temperature differential Stirling engines

2. Ringbom Stirling Engines;Senft,1993

3. Theory and Principles of Low-Temperature Hot Air Engines Fueled by Solar Energy;Haneman,1975

4. Magnetization and Electrical Resistivity of Gadolinium Single Crystals

5. Flexible triboelectric generator

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3