Image Recognition of Coal and Coal Gangue Using a Convolutional Neural Network and Transfer Learning

Author:

Pu Yuanyuan,Apel Derek B.ORCID,Szmigiel Alicja,Chen Jie

Abstract

Recognizing and distinguishing coal and gangue are essential in engineering, such as in coal-fired power plants. This paper employed a convolutional neural network (CNN) to recognize coal and gangue images and help segregate coal and gangue. A typical workflow for CNN image recognition is presented as well as a strategy for updating the model parameters. Based on a powerful trained image recognition model, VGG16, the idea of transfer learning was introduced to build a custom CNN model to solve the problems of massive trainable parameters and limited computing power linked to the building of a brand-new model from scratch. Two hundred and forty coal and gangue images were collected in a database, including 100 training images and 20 validation images for each material. A recognition accuracy of 82.5% was obtained for the validation images, which demonstrated a decent performance of our model. According to the analysis of parameter updating in the training process, a principal constraint for obtaining a higher recognition accuracy mainly resided in a shortage of training samples. This model was also used to identify photos from a washing plant stockpiles, which verified its capability of dealing with field pictures. CNN combined with the transfer learning method we used can provide fast and robust coal/gangue distinction that does not require harsh data support and equipment support. This method will exhibit brighter prospects in engineering if the target image database (as with the coal and gangue images in this study) can be further enlarged.

Funder

National Key Research and Development Program of China

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference19 articles.

1. High-efficiency coal-fired power plants development and perspectives

2. Density-dependent separation of dry fine coal in a vibrated fluidized bed

3. Frothing in Flotation II: Recent Advances in Coal Processing (Vol. 2),2018

4. An efficient of coal and gangue recognition algorithm;Gao;Int. J. Signal Process. Image Process. Pattern Recognit.,2013

Cited by 118 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3