LWR-Net: Robust and Lightweight Place Recognition Network for Noisy and Low-Density Point Clouds

Author:

Zhang Zhenghua1,Chen Guoliang1,Shu Mingcong1,Wang Xuan2

Affiliation:

1. School of Environment Science and Spatial Informatics, China University of Mining and Technology, Xuzhou 221116, China

2. State Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing, Wuhan University, Wuhan 430079, China

Abstract

Point cloud-based retrieval for place recognition is essential in robotic applications like autonomous driving or simultaneous localization and mapping. However, this remains challenging in complex real-world scenes. Existing methods are sensitive to noisy, low-density point clouds and require extensive storage and computation, posing limitations for hardware-limited scenarios. To overcome these challenges, we propose LWR-Net, a lightweight place recognition network for efficient and robust point cloud retrieval in noisy, low-density conditions. Our approach incorporates a fast dilated sampling and grouping module with a residual MLP structure to learn geometric features from local neighborhoods. We also introduce a lightweight attentional weighting module to enhance global feature representation. By utilizing the Generalized Mean pooling structure, we aggregated the global descriptor for point cloud retrieval. We validated LWR-Net’s efficiency and robustness on the Oxford robotcar dataset and three in-house datasets. The results demonstrate that our method efficiently and accurately retrieves matching scenes while being more robust to variations in point density and noise intensity. LWR-Net achieves state-of-the-art accuracy and robustness with a lightweight model size of 0.4M parameters. These efficiency, robustness, and lightweight advantages make our network highly suitable for robotic applications relying on point cloud-based place recognition.

Funder

China Postdoctoral Science Foundation

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Lightweight and rotation-invariant place recognition network for large-scale raw point clouds;ISPRS Journal of Photogrammetry and Remote Sensing;2024-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3