L-DIG: A GAN-Based Method for LiDAR Point Cloud Processing under Snow Driving Conditions

Author:

Zhang Yuxiao1ORCID,Ding Ming12,Yang Hanting1ORCID,Niu Yingjie1,Feng Yan1,Ohtani Kento1,Takeda Kazuya13

Affiliation:

1. Graduate School of Informatics, Nagoya University, Furo-cho, Chikusa-Ward, Nagoya 464-8601, Japan

2. Institutes of Innovation for Future Society, Nagoya University, Furo-cho, Chikusa-Ward, Nagoya 464-8601, Japan

3. Tier IV Inc., Nagoya University Open Innovation Center, 1-3, Mei-eki 1-chome, Nakamura-Ward, Nagoya 450-6610, Japan

Abstract

LiDAR point clouds are significantly impacted by snow in driving scenarios, introducing scattered noise points and phantom objects, thereby compromising the perception capabilities of autonomous driving systems. Current effective methods for removing snow from point clouds largely rely on outlier filters, which mechanically eliminate isolated points. This research proposes a novel translation model for LiDAR point clouds, the ‘L-DIG’ (LiDAR depth images GAN), built upon refined generative adversarial networks (GANs). This model not only has the capacity to reduce snow noise from point clouds, but it also can artificially synthesize snow points onto clear data. The model is trained using depth image representations of point clouds derived from unpaired datasets, complemented by customized loss functions for depth images to ensure scale and structure consistencies. To amplify the efficacy of snow capture, particularly in the region surrounding the ego vehicle, we have developed a pixel-attention discriminator that operates without downsampling convolutional layers. Concurrently, the other discriminator equipped with two-step downsampling convolutional layers has been engineered to effectively handle snow clusters. This dual-discriminator approach ensures robust and comprehensive performance in tackling diverse snow conditions. The proposed model displays a superior ability to capture snow and object features within LiDAR point clouds. A 3D clustering algorithm is employed to adaptively evaluate different levels of snow conditions, including scattered snowfall and snow swirls. Experimental findings demonstrate an evident de-snowing effect, and the ability to synthesize snow effects.

Funder

Nagoya University

JSPS KAKENHI

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. LiDAR Point Cloud Augmentation for Adverse Conditions Using Conditional Generative Model;Remote Sensing;2024-06-20

2. Revolutionizing Loading Robot Perception: Advanced 3D Carriage Detection Technology;2024 10th International Conference on Electrical Engineering, Control and Robotics (EECR);2024-03-29

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3