SiamHSFT: A Siamese Network-Based Tracker with Hierarchical Sparse Fusion and Transformer for UAV Tracking

Author:

Hu Xiuhua12,Zhao Jing12,Hui Yan12,Li Shuang12,You Shijie12

Affiliation:

1. School of Computer Science and Engineering, Xi’an Technological University, Xi’an 710021, China

2. State and Provincial Joint Engineering Laboratory of Advanced Network, Monitoring and Control, Xi’an 710021, China

Abstract

Due to high maneuverability as well as hardware limitations of Unmanned Aerial Vehicle (UAV) platforms, tracking targets in UAV views often encounter challenges such as low resolution, fast motion, and background interference, which make it difficult to strike a compatibility between performance and efficiency. Based on the Siamese network framework, this paper proposes a novel UAV tracking algorithm, SiamHSFT, aiming to achieve a balance between tracking robustness and real-time computation. Firstly, by combining CBAM attention and downward information interaction in the feature enhancement module, the provided method merges high-level and low-level feature maps to prevent the loss of information when dealing with small targets. Secondly, it focuses on both long and short spatial intervals within the affinity in the interlaced sparse attention module, thereby enhancing the utilization of global context and prioritizing crucial information in feature extraction. Lastly, the Transformer’s encoder is optimized with a modulation enhancement layer, which integrates triplet attention to enhance inter-layer dependencies and improve target discrimination. Experimental results demonstrate SiamHSFT’s excellent performance across diverse datasets, including UAV123, UAV20L, UAV123@10fps, and DTB70. Notably, it performs better in fast motion and dynamic blurring scenarios. Meanwhile, it maintains an average tracking speed of 126.7 fps across all datasets, meeting real-time tracking requirements.

Funder

Natural Science Basic Research Project of the Shaanxi Provincial Department of Science and Technology

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3