Analysis of Relationship between Road Geometry and Automated Driving Safety for Automated Vehicle-Based Mobility Service

Author:

Tak SehyunORCID,Kim Sari,Yu HwapyeongORCID,Lee DonghounORCID

Abstract

Various mobility services have been proposed based on the integration of automated vehicle (AV) and road infrastructure. Service providers need to identify a set of road sections for ensuring the driving safety of an AV-based mobility service. The main objective of this research is to analyze the safety performance of AVs on the road geometrical features present during this type of mobility service. To achieve the research goal, a mobility service is classified by a combination of six road types, including expressway, bus rapid transit (BRT) lane, principal arterial road, minor arterial road, collector road, and local road. With any given road type, a field test dataset is collected and analyzed to assess the safety performance of the AV-based mobility service with respect to road geometry. Furthermore, the safety performances of each road section are explored by using a historical dataset for human-driven vehicle-involved accident cases. The result reveals that most of the dangerous occurrences in both AV and human-driven vehicles show similar patterns. However, contrasting results are also observed in crest vertical curve sections, where the AV shows a lower risk of dangerous events than that of a human-driven vehicle. The findings can be used as primary data for optimizing the physical and digital infrastructure needed to implement efficient and safe AV-based mobility services in the future.

Funder

Korea Transport Institute

National Research Council for Economics Humanities and Social Science

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

Reference39 articles.

1. Mobility and the Sharing Economy: Industry Developments and Early Understanding of Impactshttps://escholarship.org/uc/item/96j5r729

2. Shared Automated Mobility: Early Exploration and Potential Impacts;Stocker;Road Veh. Autom.,2018

3. Shared Automated Mobility and Public Transport

4. What Does the Future of Automated Driving Mean for Public Transportation?

5. Autonomous Shuttle Bus for Public Transportation: A Review

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3