Multiple Melting Temperatures in Glass-Forming Melts

Author:

Tournier Robert F.ORCID,Ojovan Michael I.ORCID

Abstract

All materials are vitrified by fast quenching even monoatomic substances. Second melting temperatures accompanied by weak exothermic or endothermic heat are often observed at Tn+ after remelting them above the equilibrium thermodynamic melting transition at Tm. These temperatures, Tn+, are due to the breaking of bonds (configurons formation) or antibonds depending on the thermal history, which is explained by using a nonclassical nucleation equation. Their multiple existence in monoatomic elements is now demonstrated by molecular dynamics simulations and still predicted. Proposed equations show that crystallization enthalpy is reduced at the temperature Tx due to new vitrification of noncrystallized parts and their melting at Tn+. These glassy parts, being equal above Tx to singular values or to their sum, are melted at various temperatures Tn+ and attain 100% in Cu46Zr46Al8 and 86.7% in bismuth. These first order transitions at Tn+ are either reversible or irreversible, depending on the formation of super atoms, either solid or liquid.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

Reference98 articles.

1. Amorphous polymorphism

2. High pressure transformations in simple metals;Brazhkin;Int. J. High Press. Res.,1997

3. Polymorphic Phase Transitions in Liquids and Glasses

4. The relationship between liquid, supercooled and glassy water

5. Supercooled liquids and the glass transition;Stillinger;Nature,2001

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3