Assessment of Simulated Solar Irradiance on Days of High Intermittency Using WRF-Solar

Author:

Prasad Abhnil AmteshORCID,Kay Merlinde

Abstract

Improvements in the short-term predictability of irradiance in numerical weather prediction models can assist grid operators in managing intermittent solar-generated electricity. In this study, the performance of the Weather Research and Forecasting (WRF) model when simulating different components of solar irradiance was tested under days of high intermittency at Mildura, a site located on the border of New South Wales and Victoria, Australia. Initially, four intermittent and clear case days were chosen, later extending to a full year study in 2005. A specific configuration and augmentation of the WRF model (version 3.6.1) designed for solar energy applications (WRF-Solar) with an optimum physics ensemble derived from literature over Australia was used to simulate solar irradiance with four nested domains nudged to ERA-Interim boundary conditions at grid resolutions (45, 15, 5, and 1.7 km) centred over Mildura. The Bureau of Meteorology (BOM) station dataset available at minute timescales and hourly derived satellite irradiance products were used to validate the simulated products. Results showed that on days of high intermittency, simulated solar irradiance at finer resolution was affected by errors in simulated humidity and winds (speed and direction) affecting clouds and circulation, but the latter improves at coarser resolutions; this is most likely from reduced displacement errors in clouds.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3