Efficiency Analysis of Fractional KiloWatt Reluctance Motors with Various Frame Sizes, Taking into Account the Impact of the Punching Process

Author:

Gmyrek ZbigniewORCID,Smółka KrzysztofORCID

Abstract

The need to reduce electricity consumption by electrical devices, including electric motors, is the reason for the development of new designs. Designers strive to improve operational parameters, including efficiency, using, for example, new types of magnetic materials, new types of stator windings, etc. Currently, in mass production, motor cores are made of punched laminations—punching causes damage of core parts. For motors of relatively large geometrical sizes, this effect is ignored during design. For motors having small dimensions, this negative effect results in a reduction in efficiency, which is mostly small for this type of motor. In this paper, the authors propose a new rapid algorithm based on simple measurements to determine the material characteristics of the damaged material part. Then, using them in the FEM models, they determine the efficiency of motors with various powers and frame sizes. On this basis, the conclusions are formulated, they may be helpful for motor designers.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference22 articles.

1. Beyond Induction Motors—Technology Trends to Move Up Efficiency

2. Efficiency Enhancement of General AC Drive System by Remanufacturing Induction Motor With Interior Permanent-Magnet Rotor

3. Technical and Economical Considerations on Super High-Efficiency Three-Phase Motors

4. Commission Regulation (EC) No. 640/2009 Implementing Directive 2005/32/EC of the European Parliament and of the Council with Regard to Ecodesign Requirements for Electric MOTORShttps://eur562lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32009R0640&from=FR

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3