Author:
Song Yulong,Wang Haidan,Cao Feng
Abstract
As a natural fluid with superior environment advantages, CO2 is used to constitute a dual transcritical system to reduce performance deterioration under high gas-cooler outlet temperature. Aiming at the system configuration, improvement potential, and optimization, the proposed system is deeply analyzed, and corresponding coupling models are presented in detail. First, the veracity of simulation models is completely verified by comparing with previous measurements. Then, the existence of the optimal intermediate temperature is validated, while the optimal values are found to increase with the augmentation in ambient and water-feed temperatures. Moreover, the negative effects of the pinch point on the heat transfer inside the gas cooler could be greatly reduced by using the dual gas cooler. Finally, a predictive correlation for optimal intermediate temperature determination with ambient and water-feed temperature as independent variables is proposed, which provides a theoretical basis for the proposed system to realize efficient control in the industrialization process.
Funder
National Major Science and Technology Projects of China
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献