Study on Intelligent Identification Method of Coal Pillar Stability in Fully Mechanized Caving Face of Thick Coal Seam

Author:

Dai Jingjing,Shan PengfeiORCID,Zhou Qi

Abstract

The combination of coal precise mining and information technology in the new century is one of the important directions for the future development of coal mining. Taking the fully mechanized top coal caving condition of a thick coal seam in the 90,101 working face of Baoshan Yujing Coal Mine in Shanyin City, Shanxi Province as an example, the intelligent identification method of section coal pillar stability was studied. The load transfer law of overlying strata in the upper part of coal pillar was analyzed, and the coal pillar values of each index were obtained by using an empirical formula, mean impact value-genetic algorithm-BP neural network (MIV-GA-BP) simulation experiment, and finite difference algorithm. The Delphi index evaluation system was used to calculate the optimal value of the coal pillar. The results showed that the non-contact cantilevered triangle on the two wings of the coal pillar in the goaf reduced the stress on the coal pillar; according to the width of the coal pillar at 10 m, 14 m, 16 m, and 20 m, combined with the relationship between the plastic zone and the core zone of coal pillar, and the relationship between the stress field and the ultimate strength of coal pillar, the numerical simulation value of the coal pillar was determined. The MIV (mean impact value) characteristics screened out the influencing factors of coal pillar width in the section near the horizontal fully mechanized top coal caving face order of importance; the relative error between the predicted value and the expected value of the MIV-GA-BP simulation experiment was less than 5%, which has good stability for the multi-factor nonlinear coupling prediction problem; and the optimal value of the coal pillar was 16.03 m by the intelligent identification method of the coal pillar. When the 16 m pillar was used, the surrounding rock deformation of the roadway was small, and the control effect was good. The research results provide a theoretical basis and reference for the parameter determination of similar projects.

Funder

National Natural Science Foundation of China

the 973 Key National Basic Research Program of China

Natural Science Foundation of Shaanxi Province

China Postdoctoral Science Foundation

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference24 articles.

1. Scientific conception of precision coal mining;Yuan;J. China Coal Soc.,2017

2. Scientific problem and countermeasure for precision mining of coal and associated resources;Yuan;J. China Coal Soc.,2019

3. Framework and key technologies of Internet of things for precision coal mining;Yuan;J. Ind. Mine Autom.,2017

4. Investigation of Shale-Gas-Production Behavior: Evaluation of the Effects of Multiple Physics on the Matrix

5. Study of reasonable width of full-mechanized top-coal caving with large mining height;Kong;J. Rock Soil Mech.,2014

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3