Propagation of Overvoltages in the Form of Impulse, Chopped and Oscillating Waveforms in Transformer Windings—Time and Frequency Domain Approach

Author:

Florkowski MarekORCID,Furgał Jakub,Kuniewski MaciejORCID

Abstract

This paper describes a comparison of overvoltage propagation in transformer windings. Expanding and evolving electrical networks comprise various classes of transient waveforms, related to network reconfigurations, failure stages and switching phenomena, including new sources based on power electronics devices. In particular, the integration of renewable energy sources—mainly solar and wind—as well as expanding charging and energy storage infrastructure for electric cars in smart cities results in network flexibility manifested by switching phenomena and transients propagation, both impulse and oscillating. Those external transients, having a magnitude below the applied protection level may have still a considerable effect on winding electrical insulation in transformers, mainly due to internal resonance phenomena, which have been the root cause of many transformer failures. Such cases might occur if the frequency content of the incoming waveform matches the resonance zones of the winding frequency characteristic. Due to this coincidence, the measurements were performed both in time and frequency domain, applying various classes of transients, representing impulse, chopped (time to chopping from 1 µs to 50 µs) and oscillating overvoltages. An additional novelty was a superposition of a full lighting impulse with an oscillating component in the form of a modulated wavelet. The comparison of propagation of those waveforms along the winding length as well as a transfer case between high and low voltage windings were analyzed. The presented mapping of overvoltage prone zones along the winding length can contribute to transformer design optimization, development of novel diagnostic methodology, improved protection concepts and the proper design of modern networks.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference30 articles.

1. Electrical Transient Interaction between Transformers and the Power System (Part 1-Expertise, Part 2: Case Studies),2014

2. Electrical transient interaction between transformers and power system–Brazilian experience;Massaro,2009

3. High Frequency Methods for Condition Assessment of Transformers and Electrical Machines;Florkowski,2013

4. Electrical Transient Interaction between Transformers and the Power System;Rocha,2008

5. Internal winding failure due to resonance overvoltages in distribution transformer caused by winter lightning;Hori;IEEE Trans. Power Deliv.,2006

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3