Optimization of Electric Vehicle Charging Scheduling in Urban Village Networks Considering Energy Arbitrage and Distribution Cost

Author:

Srithapon ChitchaiORCID,Ghosh Prasanta,Siritaratiwat Apirat,Chatthaworn Rongrit

Abstract

Electric vehicles (EV) replacing the internal combustion engine vehicle may be the solution for the particulate matter (PM) 2.5 pollution issue. However, the uncontrolled charging of EVs would challenge the power system operation. Therefore, it is necessary to implement some level of control over the EV charging procedure, especially in the residential network. In this paper, an optimization of EVs charging scheduling considering energy arbitrage and the distribution network cost of an urban village environment is presented. The optimized strategy focuses on decreasing the loss of EV owners’ energy arbitrage benefit, introduced as the penalty cost. Also, peak demand, power loss, and transformer aging are included in the estimation of the cost function for the distribution network. The optimization problem is solved using the genetic algorithm. As a case study, data from the urban village in Udon Thani, Thailand, are utilized to demonstrate the applicability of the proposed method. Simulation results show a reduction in the loss of energy arbitrage benefit, transformer peak load, power loss and the transformer loss of life. Therefore, the application of the optimized EV charging can prolong transformer lifetime benefiting both the EV owner and the distribution system operator.

Funder

Khon Kaen University

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 45 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3