A Review of Dynamic Object Filtering in SLAM Based on 3D LiDAR

Author:

Peng Hongrui1,Zhao Ziyu1,Wang Liguan12

Affiliation:

1. School of Resources and Safety Engineering, Central South University, Changsha 410083, China

2. Changsha Digital Mine Co., Ltd., Changsha 410221, China

Abstract

SLAM (Simultaneous Localization and Mapping) based on 3D LiDAR (Laser Detection and Ranging) is an expanding field of research with numerous applications in the areas of autonomous driving, mobile robotics, and UAVs (Unmanned Aerial Vehicles). However, in most real-world scenarios, dynamic objects can negatively impact the accuracy and robustness of SLAM. In recent years, the challenge of achieving optimal SLAM performance in dynamic environments has led to the emergence of various research efforts, but there has been relatively little relevant review. This work delves into the development process and current state of SLAM based on 3D LiDAR in dynamic environments. After analyzing the necessity and importance of filtering dynamic objects in SLAM, this paper is developed from two dimensions. At the solution-oriented level, mainstream methods of filtering dynamic targets in 3D point cloud are introduced in detail, such as the ray-tracing-based approach, the visibility-based approach, the segmentation-based approach, and others. Then, at the problem-oriented level, this paper classifies dynamic objects and summarizes the corresponding processing strategies for different categories in the SLAM framework, such as online real-time filtering, post-processing after the mapping, and Long-term SLAM. Finally, the development trends and research directions of dynamic object filtering in SLAM based on 3D LiDAR are discussed and predicted.

Funder

National Key R&D Program of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3