Author:
Wang Evan Ja-Yang,Chen I-Hsuan,Kuo Brian Yu-Ting,Yu Chia-Cheng,Lai Ming-Tsung,Lin Jen-Tai,Lin Leo Yen-Ting,Chen Chih-Mei,Hwang Tritium,Sheu Jim Jinn-Chyuan
Abstract
Cytoskeleton proteins have been long recognized as structural proteins that provide the necessary mechanical architecture for cell development and tissue homeostasis. With the completion of the cancer genome project, scientists were surprised to learn that huge numbers of mutated genes are annotated as cytoskeletal or associated proteins. Although most of these mutations are considered as passenger mutations during cancer development and evolution, some genes show high mutation rates that can even determine clinical outcomes. In addition, (phospho)proteomics study confirms that many cytoskeleton-associated proteins, e.g., β-catenin, PIK3CA, and MB21D2, are important signaling mediators, further suggesting their biofunctional roles in cancer development. With emerging evidence to indicate the involvement of mechanotransduction in stemness formation and cell differentiation, mutations in these key cytoskeleton components may change the physical/mechanical properties of the cells and determine the cell fate during cancer development. In particular, tumor microenvironment remodeling triggered by such alterations has been known to play important roles in autophagy, metabolism, cancer dormancy, and immune evasion. In this review paper, we will highlight the current understanding of how aberrant cytoskeleton networks affect cancer behaviors and cellular functions through mechanotransduction.
Funder
National Science and Technology Council (NSTC)/Taiwan
Ministry of Health and Welfare/Taiwan
NSYSU-KVGH joint research projects
Zheng De-Ling foundation
Multidisciplinary Digital Publishing Institute
Subject
Molecular Biology,Biochemistry
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献