Developing an Improved Survival Prediction Model for Disease Prognosis

Author:

Chen ZhanboORCID,Wei Qiufeng

Abstract

Machine learning has become an important research field in genetics and molecular biology. Survival analysis using machine learning can provide an important computed-aid clinical research scheme for evaluating tumor treatment options. However, the genomic features are high-dimensional, which limits the prediction performance of the survival learning model. Therefore, in this paper, we propose an improved survival prediction model using a deep forest and self-supervised learning. It uses a deep survival forest to perform adaptive learning of high-dimensional genomic data and ensure robustness. In addition, self-supervised learning, as a semi-supervised learning style, is designed to utilize unlabeled samples to improve model performance. Based on four cancer datasets from The Cancer Genome Atlas (TCGA), the experimental results show that our proposed method outperforms four advanced survival analysis methods in terms of the C-index and brier score. The developed prediction model will help doctors rethink patient characteristics’ relevance to survival time and personalize treatment decisions.

Funder

Guangxi First-class Discipline Statistics Construction Project Fund

Guangxi Key Laboratory of Big Data in Finance and Economics

National Social Science Fund of China

Publisher

MDPI AG

Subject

Molecular Biology,Biochemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3