Sequence-Based Prediction of Protein Phase Separation: The Role of Beta-Pairing Propensity

Author:

Mullick PratikORCID,Trovato AntonioORCID

Abstract

The formation of droplets of bio-molecular condensates through liquid-liquid phase separation (LLPS) of their component proteins is a key factor in the maintenance of cellular homeostasis. Different protein properties were shown to be important in LLPS onset, making it possible to develop predictors, which try to discriminate a positive set of proteins involved in LLPS against a negative set of proteins not involved in LLPS. On the other hand, the redundancy and multivalency of the interactions driving LLPS led to the suggestion that the large conformational entropy associated with non specific side-chain interactions is also a key factor in LLPS. In this work we build a LLPS predictor which combines the ability to form pi-pi interactions, with an unrelated feature, the propensity to stabilize the β-pairing interaction mode. The cross-β structure is formed in the amyloid aggregates, which are involved in degenerative diseases and may be the final thermodynamically stable state of protein condensates. Our results show that the combination of pi-pi and β-pairing propensity yields an improved performance. They also suggest that protein sequences are more likely to be involved in phase separation if the main chain conformational entropy of the β-pairing maintained droplet state is increased. This would stabilize the droplet state against the more ordered amyloid state. Interestingly, the entropic stabilization of the droplet state appears to proceed according to different mechanisms, depending on the fraction of “droplet-driving“ proteins present in the positive set.

Funder

University of Padua

Publisher

MDPI AG

Subject

Molecular Biology,Biochemistry

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3