Alteration of Cellular Energy Metabolism through LPAR2-Axin2 Axis in Gastric Cancer

Author:

Ara Hosne,Subedi Utsab,Sharma Papori,Bhattarai SusmitaORCID,Sharma Sudha,Manikandan Shrivats,Yu Xiuping,Bhuiyan Md. ShenuarinORCID,Sun Hong,Miriyala Sumitra,Panchatcharam ManikandanORCID

Abstract

Lysophosphatidic acid (LPA), a multifunctional endogenous phospholipid, plays a vital role in cellular homeostasis and the malignant behavior of cancer cells through G-protein-coupled receptors. However, the role of LPA in β-catenin-mediated gastric cancer is unknown. Here, we have noted the high expression of LPAR2 in human gastric cancer tissues, and that LPA treatment significantly increased the proliferation, migration, and invasion of human gastric cancer cells. Results from our biochemical experiments showed that an LPA exposure increased the expression of β-catenin and its nuclear localization, increased the phosphorylation of glycogen synthase kinase 3β (GSK-3β), decreased the expression of Axin2, and increased the expression of the target genes of the β-catenin signaling pathway. The LPA2 receptor (LPAR2) antagonist significantly reduced the LPA-induced nuclear localization of β-catenin, the primary signaling event. The knockdown of LPAR2 in the gastric cancer cell lines robustly reduced the LPA-induced β-catenin activity. An LPA exposure increased the ATP production by both oxidative phosphorylation and glycolysis, and this effect was abrogated with the addition of an LPAR2 antagonist and XAV393, which stabilizes the Axin and inhibits the β-catenin signaling pathway. Based on our findings, the possibility that LPA contributes to gastric cancer initiation and progression through the β-catenin signaling pathway as well as by the dysregulation of the energy metabolism via the LPAR2 receptor and Axin2, respectively, provides a novel insight into the mechanism of and possible therapeutic targets of gastric cancer.

Funder

National Institutes of Health

Louisiana State University Health Sciences Center-Shreveport

Publisher

MDPI AG

Subject

Molecular Biology,Biochemistry

Reference53 articles.

1. Characteristics of gastric cancer in Asia;Rahman;World J. Gastroenterol.,2014

2. Targeted therapy for gastric cancer: Molecular pathways and ongoing investigations;Yang;Biochim. Biophys. Acta,2014

3. Role for Daple in non-canonical Wnt signaling during gastric cancer invasion and metastasis;Ara;Cancer Sci.,2016

4. beta-Catenin mutation is a frequent cause of Wnt pathway activation in gastric cancer;Clements;Cancer Res.,2002

5. Ooi, C.H., Ivanova, T., Wu, J., Lee, M., Tan, I.B., Tao, J., Ward, L., Koo, J.H., Gopalakrishnan, V., and Zhu, Y. (2009). Oncogenic Pathway Combinations Predict Clinical Prognosis in Gastric Cancer. PLoS Genet., 5.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3