Modeling Organizational Performance with Machine Learning

Author:

Pap Jozsef,Mako CsabaORCID,Illessy Miklos,Kis Norbert,Mosavi Amir

Abstract

Identifying the performance factors of organizations is of utmost importance for labor studies for both empirical and theoretical research. The present study investigates the essential intra- and extra-organizational factors in determining the performance of firms using the European Company Survey (ECS) 2019 framework. The evolutionary computation method of genetic algorithm and the machine learning method of Bayesian additive regression trees (BART), are used to model the importance of each of the intra- and extra-organizational factors in identifying the firms’ performance as well as employee well-being. The standard metrics are further used to evaluate the accuracy of the proposed method. The mean value of the evaluation metrics for the accuracy of the impact of intra- and extra-organizational factors on firm performance are MAE = 0.225, MSE = 0.065, RMSE = 0.2525, and R2 = 0.9125, and the value of these metrics for the accuracy of the impact of intra- and extra-organizational factors on employee well-being are MAE = 0.18, MSE = 0.0525, RMSE = 0.2275, and R2 = 0.88. The low values of MAE, MSE and RMSE, and the high value of R2, indicate the high level of accuracy of the proposed method. The results revealed that the two variables of work organization and innovation are essential in improving firm performance well-being, and that the variables of collaboration and outsourcing, as well as job complexity and autonomy, have the greatest role in improving firm performance.

Funder

European Commission

Publisher

Elsevier BV

Subject

General Economics, Econometrics and Finance,Sociology and Political Science,Development

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3