Simulation of Groundwater Dissolved Organic Carbon in Yufu River Basin during Artificial Recharge: Improving through the SWAT-MODFLOW-RT3D Reaction Module

Author:

Hong Xiaotao12,Chen Xuequn34,Xia Kezheng5,Zhang Wenqing1,Wang Zezheng12,Liu Dan34,Li Shuxin12,Zhang Wenjing12

Affiliation:

1. Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun 130021, China

2. Jilin Provincial Key Laboratory of Water Resources and Water Environment, Jilin University, Changchun 130021, China

3. Water Resources Research Institute of Shandong Province, Jinan 250013, China

4. Shandong Provincial Key Laboratory of Water Resources and Environment, Jinan 250013, China

5. Liaocheng City Weishan Irrigation Area Management Service Center, Liaocheng 252000, China

Abstract

To keep groundwater levels stable, Jinan’s government has implemented several water management measures. However, considerable volumes of dissolved organic carbon (DOC) can enter groundwater via water exchange, impacting groundwater stability. In this study, a SWAT-MODFLOW-RT3D model designed specifically for the Yufu River Basin is developed, and part of the code of the RT3D module is modified to simulate changes in DOC concentrations in groundwater under different artificial recharge scenarios. The ultimate objective is to offer valuable insights into the effective management of water resources in the designated study region. The modified SWAT-MODFLOW-RT3D model simulates the variations of DOC concentration in groundwater under three artificial recharge scenarios, which are (a) recharged by Yellow River water; (b) recharged by Yangtze River water; and (c) recharged by Yangtze River and Yellow River water. The study shows that the main source of groundwater DOC in the basin is exogenous water. The distribution of DOC concentration in groundwater in the basin shows obvious spatial variations due to the influence of infiltration of surface water. The area near the upstream riverbank is the earliest to be affected. With the prolongation of the artificial recharge period, the DOC concentration in groundwater gradually rises from upstream to downstream, and from both sides of the riverbank to the surrounding area. By 2030, the maximum level of DOC in the basin will exceed 6.20 mg/l. The Yellow River water recharge scenario provides more groundwater recharge and less DOC input than the other two scenarios. The findings of this study indicate that particularly when recharge water supplies are enhanced with organic carbon, DOC concentrations in groundwater may alter dramatically during artificial recharge. This coupled modeling analysis is critical for assessing the impact of recharge water on groundwater quality to guide subsequent recharge programs.

Funder

National Key Research and Development Program of China

Jilin Provincial Natural Science Foundation

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3