A Data Analytics and Machine Learning Approach to Develop a Technology Roadmap for Next-Generation Logistics Utilizing Underground Systems

Author:

Youn Seok Jin1,Lee Yong-Jae1ORCID,Han Ha-Eun1,Lee Chang-Woo1,Sohn Donggyun1,Lee Chulung2ORCID

Affiliation:

1. Department of Industrial and Management Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea

2. School of Industrial and Management Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea

Abstract

The increasing density of urban populations has spurred interest in utilizing underground space. Underground logistics systems (ULS) are gaining traction due to their effective utilization of this space to enhance urban spatial efficiency. However, research on technological advancements in related fields remains limited. To address this gap, we applied a data-driven approach using patent data related to the ULS to develop a technology roadmap for the field. We employed Latent Dirichlet Allocation (LDA), a machine learning-based topic modeling technique, to categorize and identify six specific technology areas within the ULS domain. Subsequently, we conducted portfolio analytics to pinpoint technology areas with high technological value and to identify the major patent applicants in these areas. Finally, we assessed the technology market potential by mapping the technology life cycle for the identified high-value areas. Among the six technology areas identified, Topic 1 (Underground Material Handling System) and Topic 4 (Underground Transportation System) showed significant patent activity from companies and research institutions in China, the United States, South Korea, and Germany compared to other countries. These areas have the top 10 patent applicants, accounting for 20.8% and 13.6% of all patent applications, respectively. Additionally, technology life cycle analytics revealed a growth trajectory for these identified areas, indicating their rapid expansion and high innovation potential. This study provides a data-driven methodology to develop a technology roadmap that offers valuable insights for researchers, engineers, and policymakers in the ULS industry and supports informed decision-making regarding the field’s future direction.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3