FusionAtt: Deep Fusional Attention Networks for Multi-Channel Biomedical Signals

Author:

Yuan Ye,Jia Kebin

Abstract

Recently, pervasive sensing technologies have been widely applied to comprehensive patient monitoring in order to improve clinical treatment. Various types of biomedical signals collected by different sensing channels provide different aspects of patient health information. However, due to the uncertainty and variability in clinical observation, not all the channels are relevant and important to the target task. Thus, in order to extract informative representations from multi-channel biosignals, channel awareness has become a key enabler for deep learning in biosignal processing and has attracted increasing research interest in health informatics. Towards this end, we propose FusionAtt—a deep fusional attention network that can learn channel-aware representations of multi-channel biosignals, while preserving complex correlations among all the channels. FusionAtt is able to dynamically quantify the importance of each biomedical channel, and relies on more informative ones to enhance feature representation in an end-to-end manner. We empirically evaluated FusionAtt in two clinical tasks: multi-channel seizure detection and multivariate sleep stage classification. Experimental results showed that FusionAtt consistently outperformed the state-of-the-art models in four different evaluation measurements, demonstrating the effectiveness of the proposed fusional attention mechanism.

Funder

National Science Foundation of China

Beijing Laboratory of Advanced Information Networks

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 28 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3