A Framework for Evaluating and Disclosing the ESG Related Impacts of AI with the SDGs

Author:

Sætra Henrik SkaugORCID

Abstract

Artificial intelligence (AI) now permeates all aspects of modern society, and we are simultaneously seeing an increased focus on issues of sustainability in all human activities. All major corporations are now expected to account for their environmental and social footprint and to disclose and report on their activities. This is carried out through a diverse set of standards, frameworks, and metrics related to what is referred to as ESG (environment, social, governance), which is now, increasingly often, replacing the older term CSR (corporate social responsibility). The challenge addressed in this article is that none of these frameworks sufficiently capture the nature of the sustainability related impacts of AI. This creates a situation in which companies are not incentivised to properly analyse such impacts. Simultaneously, it allows the companies that are aware of negative impacts to not disclose them. This article proposes a framework for evaluating and disclosing ESG related AI impacts based on the United Nation’s Sustainable Development Goals (SDG). The core of the framework is here presented, with examples of how it forces an examination of micro, meso, and macro level impacts, a consideration of both negative and positive impacts, and accounting for ripple effects and interlinkages between the different impacts. Such a framework helps make analyses of AI related ESG impacts more structured and systematic, more transparent, and it allows companies to draw on research in AI ethics in such evaluations. In the closing section, Microsoft’s sustainability reporting from 2018 and 2019 is used as an example of how sustainability reporting is currently carried out, and how it might be improved by using the approach here advocated.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

Reference66 articles.

Cited by 73 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3