Field and Numerical Study on Deformation and Failure Characteristics of Deep High-Stress Main Roadway in Dongpang Coal Mine

Author:

Liu Shuaigang,Bai Jianbiao,Wang Xiangyu,Yan ShuaiORCID,Zhao Jiaxin

Abstract

Deep horizontal high stress and high permeability geological factors appear when coal mines are converted to deep horizontal mining. When the roadway is damaged by the mining face, and the supporting components are mismatched, the deep roadways necessitate extensive repair work, which has a negative impact on the coal mining economy and sustainability. This paper carried out a series of field tests on the roadways deformation, crack distribution, and loose rock zone of the deep roadways. Furthermore, a numerical calculation model was established using the discrete element method (DEM) and calibrated with laboratory tests and RQD methods. Both the stress and crack distribution in the surrounding rock of the deep roadway were simulated. The field test and the corrected numerical model showed consistency. A FISH function was used to document the propagation of shear and tensile cracks around the roadway in three periods, and a damage parameter was adopted to evaluate the failure mechanism of the deep roadways under the dynamic stress disturbance. The matching of specifications of anchor cables, rock bolts, and anchoring agent is the primary point in the control of deep roadways, and revealing the stress evolution, crack propagation, and damage distribution caused by mining effects is another key point in deep roadway controlling. The field test and DEM in this paper provide a reference for the design of surrounding rock control of deep roadways and the sustainable development of coal mines.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3