Abstract
Deep horizontal high stress and high permeability geological factors appear when coal mines are converted to deep horizontal mining. When the roadway is damaged by the mining face, and the supporting components are mismatched, the deep roadways necessitate extensive repair work, which has a negative impact on the coal mining economy and sustainability. This paper carried out a series of field tests on the roadways deformation, crack distribution, and loose rock zone of the deep roadways. Furthermore, a numerical calculation model was established using the discrete element method (DEM) and calibrated with laboratory tests and RQD methods. Both the stress and crack distribution in the surrounding rock of the deep roadway were simulated. The field test and the corrected numerical model showed consistency. A FISH function was used to document the propagation of shear and tensile cracks around the roadway in three periods, and a damage parameter was adopted to evaluate the failure mechanism of the deep roadways under the dynamic stress disturbance. The matching of specifications of anchor cables, rock bolts, and anchoring agent is the primary point in the control of deep roadways, and revealing the stress evolution, crack propagation, and damage distribution caused by mining effects is another key point in deep roadway controlling. The field test and DEM in this paper provide a reference for the design of surrounding rock control of deep roadways and the sustainable development of coal mines.
Funder
National Natural Science Foundation of China
Subject
Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献