Abstract
Thanks to the availability of large-scale data, deep Convolutional Neural Networks (CNNs) have witnessed success in various applications of computer vision. However, the performance of CNNs on Synthetic Aperture Radar (SAR) image classification is unsatisfactory due to the lack of well-labeled SAR data, as well as the differences in imaging mechanisms between SAR images and optical images. Therefore, this paper addresses the problem of SAR image classification by employing the Generative Adversarial Network (GAN) to produce more labeled SAR data. We propose special GANs for generating SAR images to be used in the training process. First, we incorporate the quadratic operation into the GAN, extending the convolution to make the discriminator better represent the SAR data; second, the statistical characteristics of SAR images are integrated into the GAN to make its value function more reasonable; finally, two types of parallel connected GANs are designed, one of which we call PWGAN, combining the Deep Convolutional GAN (DCGAN) and Wasserstein GAN with Gradient Penalty (WGAN-GP) together in the structure, and the other, which we call CNN-PGAN, applying a pre-trained CNN as a discriminator to the parallel GAN. Both PWGAN and CNN-PGAN consist of a number of discriminators and generators according to the number of target categories. Experimental results on the TerraSAR-X single polarization dataset demonstrate the effectiveness of the proposed method.
Funder
National Natural Science Foundation of China
National Key Research and Development Program of China
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献