Ecological Flow Analysis through an Ecohydraulic-Based Catchment Scale Approach

Author:

Sedighkia Mahdi1,Datta Bithin2

Affiliation:

1. ICEDS & MSI, Australian National University, Canberra, ACT 2601, Australia

2. College of Science, James Cook University, Townsville, QLD 4811, Australia

Abstract

Ecological flow regime analysis through developing a novel ecohydraulic optimization method is the objective of this study in which three components are linked. Hydrological analysis is the first component in which average monthly flow is assessed in different hydrological conditions by applying a drought index in the selected control points or representative reaches in the river basin. Another component is the ecological model in which field ecological studies are used for selecting the target species, and habitat loss was modelled through the fuzzy method. The outputs of the hydrological analysis and hydraulic habitat simulation were then applied in the structure of the optimization model in which minimizing ecological impacts and water supply loss were defined as the purposes. Different evolutionary algorithms were used in the optimization process. A decision-making system was utilized to finalize ecological flow by selecting the privileged algorithm. According to the outputs, the proposed method can mitigate ecological impacts and water supply losses simultaneously. Either particle swarm optimization or differential evolution algorithm is the best approach for ecological flow in this research work. The outputs of optimization indicated that the reliability of the water supply in dry years is less than 32%, while it is more than 80% in wet years, which means that changing the hydrological condition will increase the portion of ecological flow regime significantly. In other words, the reliability of the water supply can be reduced by more than 50%. Hence, using other water resources such as groundwater is necessary in dry years in the study area.

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3