Research on Rock Minerals and IP Response Characteristics of Shale Gas Reservoir in Sichuan Basin

Author:

Xiang Kui,Yan Liangjun,Yu Gang,Wang Xinghao,Luo Yuanyuan

Abstract

As a kind of clean energy, shale gas has attracted much attention, and the exploration and development potential of shale gas resources in the middle and deep layers is huge. However, due to the changeable geological and burial conditions, complex geophysical responses are formed. Therefore, studying the characteristics of reservoir rock minerals and their complex resistivity response characteristics is helpful to deepen the understanding of the electrical characteristics of shale gas reservoirs and provide theoretical basis and physical basis for exploration and development. The study is based on shale samples from the Longmaxi Formation to the Wufeng Formation of a shale gas well in southern Sichuan, China, and the mineral composition and complex resistivity of shale are measured. Through inversion of complex resistivity model, four IP parameters, namely zero-frequency resistivity, polarizability, time constant and frequency correlation coefficient, are extracted, and the relationship between mineral components of rock samples and IP parameters is analyzed. It is found that the polarizability gradually increases and the resistivity gradually decreases with the increase in borehole depth. With the increase in pyrite content, the polarization increases and the resistivity decreases. The corresponding relational model is established, and it is found that the polarizability is highly sensitive to the characteristic mineral pyrite, which provides more effective data support for the subsequent deep shale gas exploration.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Reference30 articles.

1. Exploration and development of deep shale under the background of carbon neutralization;He;Energy Res. Util.,2022

2. Problem Orientated Analysis on China’s Shale Gas Policy

3. Characterizing the shale gas resource potential of Devonian–Mississippian strata in the Western Canada sedimentary basin: Application of an integrated formation evaluation

4. Reservoir properties of the Upper Cretaceous Lewis Shale, a new natural gas play in San Juan Basin;Hill;AAPG Bull.,2000

5. Gas shale and CBM development inn North America;Warlick;Oil Gas Financ. J.,2006

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3