Wind Power Prediction Method: Support Vector Regression Optimized by Improved Jellyfish Search Algorithm

Author:

Yuan Dong-Dong,Li Ming,Li Heng-YiORCID,Lin Cheng-JianORCID,Ji Bing-Xiang

Abstract

To address the problems of grid connection and power dispatching caused by non-stationary wind power output, an improved Jellyfish Search algorithm optimization support vector regression (IJS-SVR) model was proposed in this study to achieve high-precision wind power prediction. The random selection of internal parameters of SVR model will affect its performance. In this study, the Jellyfish Search (JS) algorithm was selected and improved to propose an Improved Jellyfish Search (IJS) algorithm. Compared with the comparative algorithms, the optimized values of IJS algorithm are closer to 0. It exhibits good convergence ability, search stability, and optimization-seeking ability, as well as being more suitable for solving optimization problems. Therefore, IJS was used to optimize SVR, and the prediction model of IJS-SVR was established. Different weather and seasons affect wind power and model prediction accuracy. The wind power in spring and winter was selected for model prediction verification in this study. Compared with other methods, the IJS-SVR model proposed in this study could achieve better prediction results than other models in both seasons, and its prediction performance was better, which could improve the prediction accuracy of wind power. This study provides a more economical and effective method of wind power to solve its uncertainties and can be used as a reference for grid power generation planning and power system economic dispatch.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3