The Application of the γ-Reθt Transition Model Using Sustaining Turbulence

Author:

Zhang Meihong,Nie Shengyang,Meng Xiaoxuan,Zuo Yingtao

Abstract

The freestream turbulence intensity is an important parameter for Tollmien–Schlichting waves and is also used as one of the key variables for the local- and transport-equation-based transition model in the simulations. To obtain the similar turbulence level in the vicinity to the aircraft as the turbulence intensity measured in a wind tunnel or in free-flight conditions, the sustaining turbulence term can be used for the transition model. It is important to investigate the model behavior when the sustaining turbulence is coupled with the frequently used SST-variants for transitional flows. Additionally, it is essential to obtain a nearly independent solution using the same transition model for different users on different meshes with similar grid resolution for purposes of verification and validation. So far, the relevant work has not been performed sufficiently and the sustaining turbulence technology introduces non-independent results into the freestream values. Thus, a modified sustaining turbulence approach is adopted and investigated in several test cases, including a computational effort on NACA0021 test case at 10 angles of attack. The results indicate that the modified sustaining turbulence in conjunction with the SST-2003 turbulence model yields results nearly independent to the freestream value of ω for the prediction of both streamwise and crossflow transition for two-dimensional flows without increasing computational effort too much. For three-dimensional flow, the sensitivity to initial value of ω is reduced significantly as well in comparison to the SST-based transition model, and it is highly recommended to use present sustaining turbulence technology in conjunction with the SST-2003-based transition model for engineering applications.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3