Development of a Control-Oriented Ignition Delay Model for GCI Combustion

Author:

Silvagni Giacomo,Ravaglioli VittorioORCID,Falfari StefaniaORCID,Ponti FabrizioORCID,Mariani Valerio

Abstract

Increasingly stringent pollutant emission limits and CO2 reduction policies are forcing the automotive industry toward cleaner and decarbonized mobility. The goal is to achieve carbon neutrality within 2050 and limit global warming to 2 °C (possibly 1.5 °C) with respect to pre-industrial levels as stated in both the European Green Deal and the Paris Agreement and further reiterated at the COP26. With the aim of simultaneously reducing both pollutants and CO2 emissions, a large amount of research is currently carried out on low-temperature highly efficient combustions (LTC). Among these advanced combustions, one of the most promising is Gasoline Compression Ignition (GCI), based on the spontaneous ignition of a gasoline-like fuel. Nevertheless, despite GCI proving to be effective in reducing both pollutants and CO2 emissions, GCI combustion controllability represents the main challenge that hinders the diffusion of this methodology for transportation. Several works in the literature demonstrated that to properly control GCI combustion, a multiple injections strategy is needed. The rise of pressure and temperature generated by the spontaneous ignition of small amounts of early-injected fuel reduces the ignition delay of the following main injection, responsible for the torque production of the engine. Since the combustion of the pre-injections is chemically driven, the ignition delay might be strongly affected by a slight variation in the engine control parameters and, consequently, lead to misfire or knocking. The goal of this work was to develop a control-oriented ignition delay model suitable to improve the GCI combustion stability through the proper management of the pilot injections. After a thorough analysis of the quantities affecting the ignition delay, this quantity was modeled as a function of both a thermodynamic and a chemical–physical index. The comparison between the measured and modeled ignition delay shows an accuracy compatible with the requirements for control purposes (the average root mean squared error between the measured and estimated start of combustion is close to 1.3 deg), over a wide range of operating conditions. As a result, the presented approach proved to be appropriate for the development of a model-based feed-forward contribution for a closed-loop combustion control strategy.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Reference35 articles.

1. https://www.evgo.com/ev-drivers/types-of-evs

2. https://thedriven.io/2018/08/28/what-is-a-fuel-cell-electric-vehicle

3. https://www.unep.org/resources/emissions-gap-report-2021

4. Characteristics and Control of Low Temperature Combustion Engines;Murya,2018

5. Investigation of the Sources of Combustion Noise in HCCI Engines

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3