Abstract
A new type of high-level waste (HLW) is generated during pyrochemical reprocessing of mixed nitride spent uranium–plutonium nuclear fuel. Such waste is a spent electrolyte, which is a mixture of chloride salts containing approximately 25.7 wt.% LiCl + 31.6 wt.% KCl + 4.1 wt.% CsCl + 5.1 wt.% BaCl2 + 3.8 wt.% SrCl2 + 29.7 wt.% LaCl3, and its immobilization in reliable matrices is an actual radiochemical problem. The structure and hydrolytic stability of sodium aluminoironphosphate (NAFP) glass and a low-temperature mineral-like magnesium potassium phosphate (MPP) matrix, which are promising for spent electrolyte immobilization in the presence of hydrogen peroxide solutions simulating natural water radiolysis products, were studied in this work. The structure of the samples was studied using the SEM-EDS method. It was shown that the initial samples of NAFP glass after leaching in hydrogen peroxide solutions are prone to precipitation of crystalline phases on the surface, which are mainly represented by a mixture of sodium–iron–aluminum pyrophosphates. It was established that the leaching rate of structure-forming components of NAFP and MPP matrices generally increase, but remain at a low level, meeting modern requirements for HLW immobilization. This confirms the effectiveness of the studied matrices for the industrial use of the spent electrolyte.
Funder
Ministry of Science and Higher Education of Russia
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献