Harmonic Compensation via Grid-Tied Three-Phase Inverter with Variable Structure I&I Observer-Based Control Scheme

Author:

Flota-Bañuelos ManuelORCID,Miranda-Vidales HomeroORCID,Fernández Bernardo,Ricalde Luis J.,Basam A.ORCID,Medina J.

Abstract

The power inverter topologies are indispensable devices to incorporate distributed generation schemes, like photovoltaic energy sources into the AC main. The nonlinear behavior of the power inverter draws a challenge when it comes to their control policy, rendering linear control methods often inadequate for the application. The control complexity can be further increased by the LCL filters, which are the preferred way to mitigate the current ripple caused by the inverter switching. This paper presents a robust variable structure control for a three-phase grid-tied inverter with an LCL filter. As well to the benefits of the sliding mode control (SMC), which is one of the control methods applied by power converters founded in literature, the proposed control scheme features a novel partial state observer based on the immersion and invariance technique, which thanks to its inherent robustness and speed of convergence is adequate for this application. This observer eliminates the need for physical current sensors, decreasing the overall cost and size, as well as probable sources of noise. The proposed controller is meant for a three-phase grid-tied inverter to inject active power to the grid while harmonics generated by nonlinear loads are compensated. The simulation results prove the effectiveness of the proposed method by compensating for current harmonics produced by the nonlinear loads and maintaining a low total harmonic distortion as recommended by the STD-IEEE519-2014, regardless of whether the system provides active power or not.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3