3D Modeling of Fracture-Cave Reservoir from a Strike-Slip Fault-Controlled Carbonate Oilfield in Northwestern China

Author:

Wang Rujun,Yang Jianping,Chang Lunjie,Zhang Yintao,Sun Chong,Wan Xiaoguo,Wu Guanghui,Bai Bingchen

Abstract

A giant strike-slip fault-controlled Fuman Oilfield has been found in the Ordovician fractured carbonates of the Tarim Basin. However, conventional seismic methods are hardly able to distinguish the fractured reservoir and its connectivity in the ultra-depth (>7000 m) carbonate fault zones. We propose thin-likelihood and tensor-thickness process methods to describe the fracture network and large cave reservoir, respectively. Together with the two methods for 3D visualization of fracture-cave reservoirs, we had an application in the ultra-deep well deployment in Fuman Oilfield. The results show that the fracture network and cave reservoir can be 3D-imaged more clearly than conventional methods. The fracture network and cave reservoir show distinct segmentation by the fault assemblage in Fuman Oilfield. Furthermore, 3D modeling is favorable for the reservoir connectivity description along the carbonate fault zones. There are three distinct reservoir models: fault core-, fault damage zone- and overlap zone-controlling fractured reservoirs along the fault zones. This revealed variable fractured reservoirs that are related to fault maturity and segmentation. The method has been widely used in fracture-cave reservoir description and subsequent well optimization, suggesting a favorable method for economic oil exploitation in the ultra-depth reservoirs. This case study is not only useful for the complicated reservoir 3D description and modeling but also helpful for well employment to provide support for the target evaluation and optimization in ultra-depth fractured reservoirs.

Funder

Prospective Basic Research Project of CNPC

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3