Context-Aware Group-Oriented Location Recommendation in Location-Based Social Networks

Author:

Khazaei ,Alimohammadi

Abstract

Location-based social networking services have attracted great interest with the growth of smart mobile devices. Recommending locations for users based on their preferences is an important task for location-based social networks (LBSNs). Since human beings are social by nature, group activities are important in individuals’ lives. Due to the different interests and priorities of individuals, it is difficult to find places that are ideal for all members of a group. In this study, a context-aware group-oriented location recommendation system is proposed based on a random walk algorithm. The proposed approach considers three different contexts, namely users’ contexts (i.e., social relationships, personal preferences), location context (i.e., category, popularity, capacity, and spatial proximity), and environmental context (i.e., weather, day of the week). Three graph models of LBSNs are constructed to perform a random walk with restart (RWR) algorithm in which a user-location graph is considered as the basis. In addition, two group recommendation strategies are used. One is an aggregated prediction strategy, and the other is derived from extending the RWR to the group. After performing the RWR algorithm, the group profile and location popularity are used to improve the effectiveness of the recommendation. The performance of the proposed system is examined using the Gowalla dataset related to the city of London from March 2009 to July 2011. The results indicate that the RWR algorithm outperforms popularity-based, collaborative filtering and content-based filtering. In addition, using the group profile and location popularity significantly improves the accuracy of recommendation. On the user-location graph, the number of users with recommendations matching the test data increases by 1.18 times, while the precision of creating relevant recommendations is increased by 3.4 times.

Publisher

MDPI AG

Subject

Earth and Planetary Sciences (miscellaneous),Computers in Earth Sciences,Geography, Planning and Development

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3