Direction-Aware Continuous Moving K-Nearest-Neighbor Query in Road Networks

Author:

Dong ,Yuan ,Shang ,Ye ,Zhang

Abstract

Continuous K-nearest neighbor (CKNN) queries on moving objects retrieve the K-nearest neighbors of all points along a query trajectory. They mainly deal with the moving objects that are nearest to the moving user within a specified period of time. The existing methods of CKNN queries often recommend K objects to users based on distance, but they do not consider the moving directions of objects in a road network. Although a few CKNN query methods consider the movement directions of moving objects in Euclidean space, no efficient direction determination algorithm has been applied to CKNN queries over data streams in spatial road networks until now. In order to find the top K-nearest objects move towards the query object within a period of time, this paper presents a novel algorithm of direction-aware continuous moving K-nearest neighbor (DACKNN) queries in road networks. In this method, the objects’ azimuth information is adopted to determine the moving direction, ensuring the moving objects in the result set towards the query object. In addition, we evaluate the DACKNN query algorithm via comprehensive tests on the Los Angeles network TIGER/LINE data and compare DACKNN with other existing algorithms. The comparative test results demonstrate that our algorithm can perform the direction-aware CKNN query accurately and efficiently.

Publisher

MDPI AG

Subject

Earth and Planetary Sciences (miscellaneous),Computers in Earth Sciences,Geography, Planning and Development

Reference29 articles.

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3