Generation of Lane-Level Road Networks Based on a Trajectory-Similarity-Join Pruning Strategy

Author:

Zheng ,Song ,Li ,Zhang

Abstract

With the development of autonomous driving, lane-level maps have attracted significant attention. Since the lane-level road network is an important part of the lane-level map, the efficient, low-cost, and automatic generation of lane-level road networks has become increasingly important. We propose a new method here that generates lane-level road networks using only position information based on an autonomous vehicle and the existing lane-level road networks from the existing road-level professionally surveyed without lane details. This method uses the parallel relationship between the centerline of a lane and the centerline of the corresponding segment. Since the direct point-by-point computation is huge, we propose a method based on a trajectory-similarity-join pruning strategy (TSJ-PS). This method uses a filter-and-verify search framework. First, it performs quick segmentation based on the minimum distance and then uses the similarity of two trajectories to prune the trajectory similarity join. Next, it calculates the centerline trajectory for lanes using the simulation transformation model by the unpruned trajectory points. Finally, we demonstrate the efficiency of the algorithm and generate a lane-level road network via experiments on a real road.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Earth and Planetary Sciences (miscellaneous),Computers in Earth Sciences,Geography, Planning and Development

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Beyond Traditional Simulators: Adopting Videogames for Autonomous Vehicle Testing;2023 IEEE Intl Conf on Dependable, Autonomic and Secure Computing, Intl Conf on Pervasive Intelligence and Computing, Intl Conf on Cloud and Big Data Computing, Intl Conf on Cyber Science and Technology Congress (DASC/PiCom/CBDCom/CyberSciTech);2023-11-14

2. HDM-RRT: A Fast HD-Map-Guided Motion Planning Algorithm for Autonomous Driving in the Campus Environment;Remote Sensing;2023-01-13

3. Targeting Lane-Level Map Matching for Smart Vehicles: Construction of High-Definition Road Maps Based on GIS;Applied Sciences;2023-01-08

4. From road centrelines to carriageways—A reconstruction algorithm;PLOS ONE;2022-02-22

5. Lane-Level Road Network Construction Based on Street-View Images;IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing;2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3