Photocatalytic Performance of CuxO/TiO2 Deposited by HiPIMS on Polyester under Visible Light LEDs: Oxidants, Ions Effect, and Reactive Oxygen Species Investigation

Author:

Zeghioud Hichem,Assadi Aymen,Khellaf Nabila,Djelal Hayet,Amrane Abdeltif,Rtimi SamiORCID

Abstract

In the present study, we propose a new photocatalytic interface prepared by high-power impulse magnetron sputtering (HiPIMS), and investigated for the degradation of Reactive Green 12 (RG12) as target contaminant under visible light light-emitting diodes (LEDs) illumination. The CuxO/TiO2 nanoparticulate photocatalyst was sequentially sputtered on polyester (PES). The photocatalyst formulation was optimized by investigating the effect of different parameters such as the sputtering time of CuxO, the applied current, and the deposition mode (direct current magnetron sputtering, DCMS or HiPIMS). The results showed that the fastest RG12 degradation was obtained on CuxO/TiO2 sample prepared at 40 A in HiPIMS mode. The better discoloration efficiency of 53.4% within 360 min was found in 4 mg/L of RG12 initial concentration and 0.05% Cuwt/PESwt as determined by X-ray fluorescence. All the prepared samples contained a TiO2 under-layer with 0.02% Tiwt/PESwt. By transmission electron microscopy (TEM), both layers were seen uniformly distributed on the PES fibers. The effect of the surface area to volume (dye volume) ratio (SA/V) on the photocatalytic efficiency was also investigated for the discoloration of 4 mg/L RG12. The effect of the presence of different chemicals (scavengers, oxidant or mineral pollution or salts) in the photocatalytic medium was studied. The optimization of the amount of added hydrogen peroxide (H2O2) and potassium persulfate (K2S2O8) was also investigated in detail. Both, H2O2 and K2S2O8 drastically affected the discoloration efficiency up to 7 and 6 times in reaction rate constants, respectively. Nevertheless, the presence of Cu (metallic nanoparticles) and NaCl salt inhibited the reaction rate of RG12 discoloration by about 4 and 2 times, respectively. Moreover, the systematic study of reactive oxygen species’ (ROS) contribution was also explored with the help of iso-propanol, methanol, and potassium dichromate as •OH radicals, holes (h+), and superoxide ion-scavengers, respectively. Scavenging results showed that O2− played a primary role in RG12 removal; however, •OH radicals’ and photo-generated holes’ (h+) contributions were minimal. The CuxO/TiO2 photocatalyst was found to have a good reusability and stability up to 21 cycles. Ions’ release was quantified by means of inductively coupled plasma mass spectrometry (ICP-MS) showing low Cu-ions’ release.

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3