A Mechanical Sensor Using Hybridized Metamolecules

Author:

Li Haohua,Wang Xiaobo,Yang TianORCID,Zhou Ji

Abstract

Hybridized metamaterials with collective mode resonance are usually applied as sensors. In this paper, we make use of one Mie-based hybridized metamolecule comprising of dielectric meta-atoms and an elastic bonding layer in order to detect the distances and applied forces. The hybridization induced splitting results in two new collective resonance modes, of which the red-shifted mode behaves as the in-phase oscillation of two meta-atoms. Owing to the synergy of the oscillation, the in-phase resonance appears as a deep dip with a relatively high Q-factor and figure of merit (FoM). By exerting an external force, namely by adjusting the thickness of the bonding layer, the coupling strength of the metamolecule is changed. As the coupling strength increases, the first collective mode dip red-shifts increasingly toward lower frequencies. By fitting the relationship of the distance–frequency shift and the force–frequency shift, the metamolecule can be used as a sensor to characterize tiny displacement and a relatively wide range of applied force in civil engineering and biological engineering.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3