Welding Characteristics Analysis and Application on Spacecraft of Friction Stir Welded 2A14-T6 Aluminum Alloy

Author:

Luo HaitaoORCID,Wu Tingke,Fu Jia,Wang Wei,Chen Ning,Wang Haonan

Abstract

According to the actual size parameters, the finite element model (FEM) of friction stir welding (FSW) was established, and the FEM was updated by experiments. The FSW of the 2A14-T6 high-strength aluminum alloy was simulated under a reasonable welding process parameter range, and the welding process parameters with good simulation effect were determined. The test was carried out under the same parameters, and the axial force of the FSW tool and temperature of the workpiece measuring point were collected. The comparison between the simulated data and the experimental data is reasonable, indicating the correctness of the FEM. The microstructure analysis of the welded joint shows that the grain size in the upper part of the weld nugget was smaller than that in the middle and lower parts, and there are obvious boundaries of grain size in each region of the joint. The hardness of the joint in the upper layer is higher than that in the middle and lower layers, and the minimum Vickers hardness value of the joint appears near the interface between the thermo-mechanically affected zone and the heat-affected zone on both sides of the weld. Tensile testing shows that the strength coefficient of the joint reaches 82.5% under this process parameter, and the sample breaks at the intersection of the material flow during stretching. After analyzing the final mechanical properties of the joint, we found that a degree of aerospace application can be achieved. Under this parameter, the welding test was carried out on the top cover of the rocket fuel tank. Firstly, melon valve welding, which is relatively difficult in welding conditions, was carried out, and a high-quality joint with good surface and no defects was obtained.

Publisher

MDPI AG

Subject

General Materials Science

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3