Modeling and Optimization of Fractal Dimension in Wire Electrical Discharge Machining of EN 31 Steel Using the ANN-GA Approach

Author:

Mukhopadhyay Arkadeb,Barman Tapan,Sahoo PrasantaORCID,Davim J.

Abstract

To achieve enhanced surface characteristics in wire electrical discharge machining (WEDM), the present work reports the use of an artificial neural network (ANN) combined with a genetic algorithm (GA) for the correlation and optimization of WEDM process parameters. The parameters considered are the discharge current, voltage, pulse-on time, and pulse-off time, while the response is fractal dimension. The usefulness of fractal dimension to characterize a machined surface lies in the fact that it is independent of the resolution of the instrument or length scales. Experiments were carried out based on a rotatable central composite design. A feed-forward ANN architecture trained using the Levenberg-Marquardt (L-M) back-propagation algorithm has been used to model the complex relationship between WEDM process parameters and fractal dimension. After several trials, 4-3-3-1 neural network architecture has been found to predict the fractal dimension with reasonable accuracy, having an overall R-value of 0.97. Furthermore, the genetic algorithm (GA) has been used to predict the optimal combination of machining parameters to achieve a higher fractal dimension. The predicted optimal condition is seen to be in close agreement with experimental results. Scanning electron micrography of the machined surface reveals that the combined ANN-GA method can significantly improve the surface texture produced from WEDM by reducing the formation of re-solidified globules.

Publisher

MDPI AG

Subject

General Materials Science

Cited by 26 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3