Estimating the Heating Load of Buildings for Smart City Planning Using a Novel Artificial Intelligence Technique PSO-XGBoost

Author:

Le Le Thi,Nguyen HoangORCID,Zhou JianORCID,Dou JieORCID,Moayedi Hossein

Abstract

In this study, a novel technique to support smart city planning in estimating and controlling the heating load (HL) of buildings, was proposed, namely PSO-XGBoost. Accordingly, the extreme gradient boosting machine (XGBoost) was developed to estimate HL first; then, the particle swarm optimization (PSO) algorithm was applied to optimize the performance of the XGBoost model. The classical XGBoost model, support vector machine (SVM), random forest (RF), Gaussian process (GP), and classification and regression trees (CART) models were also investigated and developed to predict the HL of building systems, and compared with the proposed PSO-XGBoost model; 837 investigations of buildings were considered and analyzed with many influential factors, such as glazing area distribution (GAD), glazing area (GA), orientation (O), overall height (OH), roof area (RA), wall area (WA), surface area (SA), and relative compactness (RC). Mean absolute percentage error (MAPE), root-mean-squared error (RMSE), variance account for (VAF), mean absolute error (MAE), and determination coefficient (R2), were used as the statistical criteria for evaluating the performance of the above models. The color intensity, as well as the ranking method, were also used to compare and evaluate the models. The results showed that the proposed PSO-XGBoost model was the most robust technique for estimating the HL of building systems. The remaining models (i.e., XGBoost, SVM, RF, GP, and CART) yielded more mediocre performance through RMSE, MAE, R2, VAF, and MAPE metrics. Another finding of this study also indicated that OH, RA, WA, and SA were the most critical parameters for the accuracy of the proposed PSO-XGBoost model. They should be particularly interested in smart city planning as well as the optimization of smart cities.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3