On Sharing Spatial Data with Uncertainty Integration Amongst Multiple Robots Having Different Maps

Author:

Ravankar AbhijeetORCID,Ravankar Ankit A.ORCID,Hoshino YoheiORCID,Kobayashi Yukinori

Abstract

Information sharing is a powerful feature of multi-robot systems. Sharing information precisely and accurately is important and has many benefits. Particularly, smart information sharing can improve robot path planning. If a robot finds a new obstacle or blocked path, it can share this information with other remote robots allowing them to plan better paths. However, there are two problems with such information sharing. First, the maps of the robots may be different in nature (e.g., 2D grid-map, 3D semantic map, feature map etc.) as the sensors used by the robots for mapping and localization may be different. Even the maps generated using the same sensor (e.g., Lidar) can vary in scale or rotation and the sensors used might have different specifications like resolution or range. In such scenarios, the ‘correspondence problem’ in different maps is a critical bottleneck in information sharing. Second, the transience of the obstacles has to be considered while also considering the positional uncertainty of the new obstacles while sharing information. In our previous work, we proposed a ‘node-map’ with a confidence decay mechanism to solve this problem. However, the previous work had many limitations due to the decoupling of new obstacle’s positional uncertainty and confidence decay. Moreover, the previous work applied only to homogeneous maps. In addition, the previous model worked only with static obstacles in the environment. The current work extends our previous work in three main ways: (1) we extend the previous work by integrating positional uncertainty in the confidence decay mechanism and mathematically model the transience of newly added or removed obstacles and discuss its merits; (2) we extend the previous work by considering information sharing in heterogeneous maps build using different sensors; and (3) we consider dynamic obstacles like moving people in the environment and test the proposed method in complex scenarios. All the experiments are performed in real environments and with actual robots and results are discussed.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3