Periocular Recognition in the Wild: Implementation of RGB-OCLBCP Dual-Stream CNN

Author:

Tiong Leslie Ching Ow,Lee Yunli,Teoh Andrew Beng JinORCID

Abstract

Periocular recognition remains challenging for deployments in the unconstrained environments. Therefore, this paper proposes an RGB-OCLBCP dual-stream convolutional neural network, which accepts an RGB ocular image and a colour-based texture descriptor, namely Orthogonal Combination-Local Binary Coded Pattern (OCLBCP) for periocular recognition in the wild. The proposed network aggregates the RGB image and the OCLBCP descriptor by using two distinct late-fusion layers. We demonstrate that the proposed network benefits from the RGB image and thee OCLBCP descriptor can gain better recognition performance. A new database, namely an Ethnic-ocular database of periocular in the wild, is introduced and shared for benchmarking. In addition, three publicly accessible databases, namely AR, CASIA-iris distance and UBIPr, have been used to evaluate the proposed network. When compared against several competing networks on these databases, the proposed network achieved better performances in both recognition and verification tasks.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Person Identification System Using Periocular Biometrics Based on Hybrid Optimal Dense Capsule Network;International Journal of Pattern Recognition and Artificial Intelligence;2024-01-20

2. A Review on Person Identification Using Periocular Biometrics;Lecture Notes in Electrical Engineering;2024

3. Periocular Biometrics and Its Applications: A Review;Lecture Notes in Electrical Engineering;2023-12-02

4. Biometric Verification using Periocular Features based on Convolutional Neural Network;2023 International Conference on Sustainable Computing and Data Communication Systems (ICSCDS);2023-03-23

5. Unconstrained Gender Recognition from Periocular Region Using Multiscale Deep Features;Intelligent Automation & Soft Computing;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3