Self-Gated Respiratory Motion Rejection for Optoacoustic Tomography

Author:

Ron AvihaiORCID,Davoudi NedaORCID,Deán-Ben Xosé Luís,Razansky Daniel

Abstract

Respiratory motion in living organisms is known to result in image blurring and loss of resolution, chiefly due to the lengthy acquisition times of the corresponding image acquisition methods. Optoacoustic tomography can effectively eliminate in vivo motion artifacts due to its inherent capacity for collecting image data from the entire imaged region following a single nanoseconds-duration laser pulse. However, multi-frame image analysis is often essential in applications relying on spectroscopic data acquisition or for scanning-based systems. Thereby, efficient methods to correct for image distortions due to motion are imperative. Herein, we demonstrate that efficient motion rejection in optoacoustic tomography can readily be accomplished by frame clustering during image acquisition, thus averting excessive data acquisition and post-processing. The algorithm’s efficiency for two- and three-dimensional imaging was validated with experimental whole-body mouse data acquired by spiral volumetric optoacoustic tomography (SVOT) and full-ring cross-sectional imaging scanners.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3