Analysis of the Moment Method and the Discrete Velocity Method in Modeling Non-Equilibrium Rarefied Gas Flows: A Comparative Study

Author:

Yang Weiqi,Tang Shuo,Yang Hui

Abstract

In the present study, the performance of the moment method, in terms of accuracy and computational efficiency, was evaluated at both the macro- and microscopic levels. Three different types of non-equilibrium gas flows, including the force-driven Poiseuille flow, lid-driven and thermally induced cavity flows, were simulated in the slip and transition regimes. Choosing the flow fields obtained from the Boltzmann model equation as the benchmark, the accuracy and validation of Navier–Stokes–Fourier (NSF), regularized 13 (R13) and regularized 26 (R26) equations were explored at the macroscopic level. Meanwhile, we reconstructed the velocity distribution functions (VDFs) using the Hermite polynomials with different-order of molecular velocity moments, and compared them with the Boltzmann solutions at the microscopic level. Moreover, we developed a kinetic criterion to indirectly assess the errors of the reconstructed VDFs. The results have shown that the R13 and R26 moment methods can be faithfully used for non-equilibrium rarefied gas flows in the slip and transition regimes. However, as indicated from the thermally induced case, all of the reconstructed VDFs are still very close to the equilibrium state, and none of them can reproduce the accurate VDF profile when the Knudsen number is above 0.5.

Funder

National Natural Science Foundation of China

Scientific Research Projects of the National University of Defense Technology

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3